skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Murphy, Matthew_D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Plant architecture is a major determinant of planting density, which enhances productivity potential for crops per unit area. Genomic prediction is well positioned to expedite genetic gain of plant architectural traits since they are typically highly heritable. Additionally, the adaptation of genomic prediction models to query predictive abilities of markers tagging certain genomic regions could shed light on the genetic architecture of these traits. Here, we leveraged transcriptional networks from a prior study that contextually described developmental progression during tassel and leaf organogenesis in maize (Zea mays) to inform genomic prediction models for architectural traits. Since these developmental processes underlie tassel branching and leaf angle, 2 important agronomic architectural traits, we tested whether genes prioritized from these networks quantitatively contribute to the genetic architecture of these traits. We used genomic prediction models to evaluate the ability of markers in the vicinity of prioritized network genes to predict breeding values of tassel branching and leaf angle traits for 2 diversity panels in maize and diversity panels from sorghum (Sorghum bicolor) and rice (Oryza sativa). Predictive abilities of markers near these prioritized network genes were similar to those using whole-genome marker sets. Notably, markers near highly connected transcription factors from core network motifs in maize yielded predictive abilities that were significantly greater than expected by chance in not only maize but also closely related sorghum. We expect that these highly connected regulators are key drivers of architectural variation that are conserved across closely related cereal crop species. 
    more » « less
  2. Abstract Genomic regions containing loci with effect sizes that interact with environmental factors are desirable targets for selection because of increasingly unpredictable growing seasons. Although selecting upon such gene‐by‐environment (G × E) loci is vital, identifying significantly associated loci is challenging due to the multiple testing correction. Consequently, G × E loci of small‐ to moderate effect sizes may never be identified via traditional genome‐wide association studies (GWAS). Variance GWAS (vGWAS) have been previously shown to identify G × E loci. Combined with its inherent reduction in the severity of multiple testing, we hypothesized that vGWAS could be successfully used to identify genomic regions likely to contain G × E effects. We used publicly available genotypic and phenotypic data in maize (Zea maysL.) to test the ability of two vGWAS approaches to identify G × E loci controlling two flowering traits. We observed high inflation of from both approaches. This suggests that these two vGWAS approaches are not suitable to the task of identifying G × E loci. We advocate that similar future applications of vGWAS use more sophisticated models that can adequately control the inflation of . Otherwise, the application of vGWAS to search for G × E effects that are critical for combating the effects of climate change will not reach its full potential. 
    more » « less